p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.78C23, C22.76C25, C23.36C24, C24.502C23, (C2×Q8)⋊41D4, Q8.58(C2×D4), Q8⋊5D4⋊13C2, Q8⋊6D4⋊15C2, (C4×D4)⋊34C22, (C4×Q8)⋊36C22, C2.28(D4×C23), C4⋊1D4⋊16C22, C4⋊D4⋊80C22, C4⋊C4.483C23, (C2×C4).169C24, C4.117(C22×D4), C22⋊Q8⋊94C22, Q8○(C22.D4), (C2×D4).298C23, C4.4D4⋊22C22, C22⋊C4.95C23, (C2×2- 1+4)⋊6C2, (C2×Q8).441C23, (C22×Q8)⋊30C22, C22.51(C22×D4), C22.29C24⋊19C2, C22.19C24⋊23C2, C22≀C2.25C22, (C23×C4).604C22, C2.15(C2.C25), (C22×C4).1207C23, (C22×D4).597C22, C23.32C23⋊12C2, C42⋊C2.224C22, C22.D4.42C22, (C2×C4).665(C2×D4), (C22×C4○D4)⋊22C2, (C2×C4○D4)⋊24C22, SmallGroup(128,2219)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.76C25
G = < a,b,c,d,e,f,g | a2=b2=c2=g2=1, d2=e2=f2=a, ab=ba, dcd-1=gcg=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 1212 in 768 conjugacy classes, 428 normal (10 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4⋊1D4, C23×C4, C22×D4, C22×Q8, C22×Q8, C2×C4○D4, C2×C4○D4, 2- 1+4, C23.32C23, C22.19C24, C22.29C24, Q8⋊5D4, Q8⋊6D4, C22×C4○D4, C2×2- 1+4, C22.76C25
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, C25, D4×C23, C2.C25, C22.76C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 21)(2 22)(3 23)(4 24)(5 10)(6 11)(7 12)(8 9)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)
(1 28)(2 27)(3 26)(4 25)(5 17)(6 20)(7 19)(8 18)(9 31)(10 30)(11 29)(12 32)(13 24)(14 23)(15 22)(16 21)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 7 3 5)(2 8 4 6)(9 24 11 22)(10 21 12 23)(13 20 15 18)(14 17 16 19)(25 29 27 31)(26 30 28 32)
(1 6 3 8)(2 5 4 7)(9 21 11 23)(10 24 12 22)(13 32 15 30)(14 31 16 29)(17 25 19 27)(18 28 20 26)
(1 21)(2 22)(3 23)(4 24)(5 10)(6 11)(7 12)(8 9)(13 27)(14 28)(15 25)(16 26)(17 32)(18 29)(19 30)(20 31)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,21)(2,22)(3,23)(4,24)(5,10)(6,11)(7,12)(8,9)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,28)(2,27)(3,26)(4,25)(5,17)(6,20)(7,19)(8,18)(9,31)(10,30)(11,29)(12,32)(13,24)(14,23)(15,22)(16,21), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7,3,5)(2,8,4,6)(9,24,11,22)(10,21,12,23)(13,20,15,18)(14,17,16,19)(25,29,27,31)(26,30,28,32), (1,6,3,8)(2,5,4,7)(9,21,11,23)(10,24,12,22)(13,32,15,30)(14,31,16,29)(17,25,19,27)(18,28,20,26), (1,21)(2,22)(3,23)(4,24)(5,10)(6,11)(7,12)(8,9)(13,27)(14,28)(15,25)(16,26)(17,32)(18,29)(19,30)(20,31)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,21)(2,22)(3,23)(4,24)(5,10)(6,11)(7,12)(8,9)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,28)(2,27)(3,26)(4,25)(5,17)(6,20)(7,19)(8,18)(9,31)(10,30)(11,29)(12,32)(13,24)(14,23)(15,22)(16,21), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7,3,5)(2,8,4,6)(9,24,11,22)(10,21,12,23)(13,20,15,18)(14,17,16,19)(25,29,27,31)(26,30,28,32), (1,6,3,8)(2,5,4,7)(9,21,11,23)(10,24,12,22)(13,32,15,30)(14,31,16,29)(17,25,19,27)(18,28,20,26), (1,21)(2,22)(3,23)(4,24)(5,10)(6,11)(7,12)(8,9)(13,27)(14,28)(15,25)(16,26)(17,32)(18,29)(19,30)(20,31) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,21),(2,22),(3,23),(4,24),(5,10),(6,11),(7,12),(8,9),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29)], [(1,28),(2,27),(3,26),(4,25),(5,17),(6,20),(7,19),(8,18),(9,31),(10,30),(11,29),(12,32),(13,24),(14,23),(15,22),(16,21)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,7,3,5),(2,8,4,6),(9,24,11,22),(10,21,12,23),(13,20,15,18),(14,17,16,19),(25,29,27,31),(26,30,28,32)], [(1,6,3,8),(2,5,4,7),(9,21,11,23),(10,24,12,22),(13,32,15,30),(14,31,16,29),(17,25,19,27),(18,28,20,26)], [(1,21),(2,22),(3,23),(4,24),(5,10),(6,11),(7,12),(8,9),(13,27),(14,28),(15,25),(16,26),(17,32),(18,29),(19,30),(20,31)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2O | 4A | ··· | 4P | 4Q | ··· | 4AB |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C2.C25 |
kernel | C22.76C25 | C23.32C23 | C22.19C24 | C22.29C24 | Q8⋊5D4 | Q8⋊6D4 | C22×C4○D4 | C2×2- 1+4 | C2×Q8 | C2 |
# reps | 1 | 1 | 6 | 6 | 8 | 8 | 1 | 1 | 8 | 4 |
Matrix representation of C22.76C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 4 | 1 | 1 | 4 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 2 | 3 | 3 | 2 |
0 | 0 | 4 | 1 | 0 | 2 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 1 | 1 | 4 |
0 | 0 | 3 | 0 | 2 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 3 | 2 | 0 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,4,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,2,4,0,0,2,0,3,1,0,0,0,0,3,0,0,0,0,0,2,2],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,4,3,0,0,1,0,1,0,0,0,0,0,1,2,0,0,0,0,4,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,3,0,0,0,1,0,2,0,0,0,0,4,0,0,0,0,0,0,4] >;
C22.76C25 in GAP, Magma, Sage, TeX
C_2^2._{76}C_2^5
% in TeX
G:=Group("C2^2.76C2^5");
// GroupNames label
G:=SmallGroup(128,2219);
// by ID
G=gap.SmallGroup(128,2219);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,232,1430,184,570,136,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=g^2=1,d^2=e^2=f^2=a,a*b=b*a,d*c*d^-1=g*c*g=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations